Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential
نویسندگان
چکیده
منابع مشابه
Porous Perovskite LaNiO3 Nanocubes as Cathode Catalysts for Li-O2 Batteries with Low Charge Potential
Developing efficient catalyst for oxygen evolution reaction (OER) is essential for rechargeable Li-O2 battery. In our present work, porous LaNiO3 nanocubes were employed as electrocatalyst in Li-O2 battery cell. The as-prepared battery showed excellent charging performance with significantly reduced overpotential (3.40 V). The synergistic effect of porous structure, large specific surface area ...
متن کامل3-D binder-free graphene foam as a cathode for high capacity Li–O2 batteries
To provide energy densities higher than those of conventional Li-ion batteries, a Li–O2 battery requires a cathode with high surface area to host large amounts of discharge product Li2O2. Therefore, reversible formation of discharge products needs to be investigated in Li–O2 cells containing high surface area cathodes. In this study, a binder-free oxygen electrode consisting of a 3-D graphene s...
متن کاملNanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries.
Despite the recent advancements in Li-O(2) (or Li-air) batteries, great challenges still remain to realize high-rate, long-term cycling. In this work, a binder-free, nanostructured RuO(2)/MnO(2) catalytic cathode was designed to realize the operation of Li-O(2) batteries at high rates. At a current density as high as 3200 mA g(-1) (or ∼1.3 mA cm(-2)), the RuO(2)/MnO(2) catalyzed Li-O(2) batteri...
متن کاملMultishelled Ni‐Rich Li(NixCoyMnz)O2 Hollow Fibers with Low Cation Mixing as High‐Performance Cathode Materials for Li‐Ion Batteries
A simple seaweed biomass conversion strategy is proposed to synthesize highly porous multishelled Ni-rich Li(Ni x Co y Mn z )O2 hollow fibers with very low cation mixing. The low cation mixing results from the cation confinement by the novel "egg-box" structure in the alginate template. These hollow fibers exhibit remarkable energy density, high-rate capacity, and long-term cycling stability wh...
متن کاملElectrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries
A low cost and non-precious metal composite material g-C3N4-LaNiO3 (CNL) was synthesized as a bifunctional electrocatalyst for the air electrode of lithium-oxygen (Li-O2) batteries. The composition strategy changed the electron structure of LaNiO3 and g-C3N4, ensures high Ni(3+)/Ni(2+) ratio and more absorbed hydroxyl on the surface of CNL that can promote the oxygen reduction reaction (ORR) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep06005